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Abstract5

We propose an approach for monitoring the concentration of dissociated carboxylic acid species6

in dilute aqueous solution. The dissociated acid species are quantified employing inline Ra-7

man spectroscopy in combination with Indirect Hard Modeling (IHM) and Multivariate Curve8

Resolution (MCR). We introduce two different titration-based Hard Model (HM) calibration9

procedures for a single mono- or polyprotic acid in water with well-known (method A) or un-10

known (method B) acid dissociation constants pKa. In both methods, spectra of only one acid11

species in water are prepared for each acid species. These spectra are used for the construction12

of HMs. For method A, the HMs are calibrated with calculated ideal dissociation equilibria. For13

method B, we estimate pKa values by fitting ideal acid dissociation equilibria to acid peak areas14

that are obtained from a spectral HM. The HM in turn is constructed on the basis of MCR data.15

Thus, method B on the basis of IHM is independent of a priori known pKa values, but instead16

provides them as part of the calibration procedure. As a detailed example, we analyze itaconic17

acid in aqueous solution. For all acid species and water, we obtain low HM errors of less than18

2.87ˆ10´4 mol mol´1 in the cases of both method A and B. With only four calibration samples,19

IHM yields more accurate results than partial least squares regression. Furthermore, we apply20

our approach to formic, acetic, and citric acid in water, thereby verifying its generalizability as21

a process analytical technology for quantitative monitoring of processes containing carboxylic22

acids.23
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1 INTRODUCTION

1 Introduction27

Carboxylic acids are predicted to play a major role as intermediate products or versatile platform28

chemicals in a biobased economy.1–10 The key factor in achieving a cost-effective, competitive29

process is the interplay of production and separation of the carboxylic acids.11, 12 The efficiency30

of integrated separation and purification strategies such as crystallization and extraction is often31

determined by dissociation of the acids as, for example, only the associated form of the acids is32

extracted.13–16 Therefore, robust and time-resolved analytics to measure the concentration and33

dissociation of the different acid species is necessary for modeling, control, and optimization of34

downstream process unit operations.17
35

The performance of such unit operations is usually quantified by concentration measurements.36

In aqueous solution, accurate knowledge of the corresponding acid dissociation constant pKa, pH37

and total acid concentration is sufficient to calculate the concentrations of acid species. This does38

not hold for mixtures with multiple chemical species influencing the pH value or dissociation39

of acids at high concentrations and high ionic strengths. These conditions typically occur in40

acid purification processes. Hence, accurate concentration data is the key to monitoring acid41

production and purification processes.42

In general, acid concentrations can be provided by offline or atline analytics such as gas and43

high-performance liquid chromatography.2, 4, 6, 8, 13, 14, 18, 19 These methods are widely used, but44

they require process sampling and are time-consuming. Moreover, they usually fail to distin-45

guish between different acid dissociation stages inline.46

Inline spectroscopy can overcome the mentioned sampling difficulties as it enables direct47

measurements of chemical species in the process at short acquisition times usually in the range48

of a few seconds.18, 20, 21 Infrared (IR) and Raman spectroscopy resolve fundamental molecular49

vibrations and therefore enable the identification of different chemical species in a mixture.50

The latter technique is especially suited for process monitoring of dissociated acid species in51

aqueous solution. The reason for this is the rather low Raman activity of water, which increases52

sensitivity for dissolved acids.53
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1 INTRODUCTION

The use of Raman or complementary IR spectroscopy for quantitative process monitoring of54

acid species is rather scarce in the literature. In most cases, the dissociation of strong mineral55

acids is investigated for fundamental research on species interaction and thermodynamic param-56

eters.22–26 H-bond formation, hydration number, and dissociation of carboxylic acids have been57

investigated by factor analysis and IR spectroscopy in combination with titration and selective58

water spectra subtraction for quantitative calibration.27–29 The approach has been suggested for59

Raman spectroscopy but has not yet been realized.29 Some studies approach dissociation of60

strong mineral acids with Raman spectroscopy to develop process analytical tools for determi-61

nation of the acid dissociation ratio.30, 31 However, they either rely on available pKa values or use62

an empirical approach for quantitative evaluation. Besides analysis of mineral acids, inline pro-63

cess monitoring of carboxylic acid species by Raman and IR spectroscopy has been successfully64

demonstrated during crystallization for liquid and solid phases, for characterization of citric acid65

and salicylic acid in aqueous solution, and for dissociation of gallic acid in aqueous solution.32–36
66

Some approaches have already succeeded in determining unknown pKa values.34–36 However,67

despite of a few studies, estimation of pKa was not part of process analytical technology so far.68

Quantitative evaluation of Raman spectra requires a chemometric method to correlate the69

signal information with the concentration of acid species. The spectroscopic signal at each70

wavenumber relates to the number of molecules within the spectroscopic measurement volume.71

This signal results in a spectrum whose intensities of peaks is proportional to concentration (cf.72

Beer-Lambert law).37 In case of overlapping peaks or small molecular variations, i.e., associated73

versus dissociated acid species, more sophisticated methods have to be used for quantification.74

A large variety of chemometric methods are available, of which peak integration (PI) and partial75

least squares (PLS) regression are the most popular.20, 21, 38–41 PI calculates the area of a peak76

which is proportional to the concentration for the respective chemical species.37 However, PI77

requires non-overlapping peaks. Such peaks are scarce for structurally similar components such78

as dissociated acid species with similar spectral signals. PLS regresses calibration spectra on79

corresponding concentration data to find the maximum covariance in the two data sets. This80
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1 INTRODUCTION

is achieved by decomposition of the data matrix into orthogonal principal components sorted81

by descending eigenvalues.38, 39, 42 PLS enables a fast evaluation of complex overlapping mix-82

ture spectra, but as a bilinear calibration model, it is limited in assessing non-linear peak shifts83

and peak deformations caused by molecular interactions in electrolytic media. This could be84

overcome by non-linear PLS or locally weighted regression, for example by multiple local PLS85

models, however at the expense of additional complexity and computational cost.43, 44 Further-86

more, PLS is purely data-driven. It therefore relies on a rather large set of calibration data and87

lacks the physical depth of the calibration compared to IHM.88

Indirect Hard Modeling (IHM) overcomes the drawbacks of PI and PLS by using linear com-89

binations of Gaussian and Lorentzian functions (i.e., pseudo-Voigt profiles) to form spectral90

Hard Models (HMs) of each chemical species contributing to the selected spectral range.45–47
91

These physically justified Pure Component Models (PCMs) are integrated, weighted and super-92

imposed to construct a mixture HM. The latter can be subsequently regressed to mixture spectra93

by adjustment of PCM weights and a set of flexible peak parameters. Therefore, the PCM can94

be selective and can account for peak shifts and peak deformations in contrast to linear models.95

Moreover, a closure constraint that supports physically meaningful results can be considered for96

IHM in contrast to PLS calibration. Until now, inline Raman spectroscopy with IHM has not97

been reported for the quantitative monitoring of acid dissociation.98

In the case of dissociated acid species, each species corresponds to one PCM. The con-99

struction of physically justified PCMs requires a systematic approach such as Complemental100

Hard Modeling (CHM), Hard Model Factor Analysis (HMFA), or Multivariate Curve Resolu-101

tion (MCR).47–51 In CHM, one or a set of PCMs is used to support the construction of another102

PCM on the basis of a mixture spectrum of k chemical species. However, CHM is only applica-103

ble for mixtures where PCMs of k ´ 1 chemical species are known. In HMFA, multiple PCMs104

are automatically obtained from a set of mixture spectra without the need for a priori known105

PCMs. Nevertheless, the algorithm requires the overall number of peaks to be modeled as input.106

In the case of chemical species with strong structural similarities, similar spectral signals impede107
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2 MATERIALS AND METHODS

a priori identification of the correct number of peaks, therefore rendering this method inappro-108

priate. Alternatively, MCR with Alternating Least Squares algorithm (MCR-ALS) can be used109

to directly compute pure component spectra from a set of mixture spectra. MCR-ALS forms110

a linear additive model subject to physical constraints such as non-negativity of concentrations111

and spectra, unimodal concentration profiles, and closure constraint, to describe the spectral112

data set as summed products of concentrations of species and their pure component spectra. As113

a main difference to PLS, MCR-ALS aims at providing physically meaningful pure component114

spectra and concentration profiles rather than an orthogonal decomposition of the spectral data115

in the form of abstract mathematical factors. However, MCR-ALS is a purely linear model and,116

similarly to PLS, not capable of assessing non-linear spectral effects. The combination of MCR-117

ALS with CHM for processing of unknown multi-component spectra to provide spectral data118

for IHM of PCMs, though, can overcome the disadvantages of the two single approaches.119

In this work, we employ inline Raman spectroscopy combined with IHM to monitor the con-120

centration and dissociation of carboxylic acids in aqueous solution. Titration and selective spec-121

tra subtraction enable the analysis of the two cases of known (method A) and unknown (method122

B) pKa values. As a novelty, we present a combination of MCR-ALS, IHM and parameter esti-123

mation for the quantification of dissociated carboxylic acid species in the case of unknown pKa124

values (method B). We test our methods on aqueous solution of itaconic, formic, acetic, and125

citric acid, respectively, and compare the calibration results of the IHM to those of PLS.126

2 Materials and Methods127

In the subsequent subsection, the overall approach for method A and B is outlined by the main128

steps and corresponding assumptions. This is followed by a more detailed view on the exper-129

imental procedure and the computational approach in the next subsections. Method A and B130

are explained in detail for diprotic itaconic acid but are shown to hold also for other carboxylic131

acids, such as monoprotic formic and acetic, as well as triprotic citric acid.132
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2.1 Overview of Method A and B133

The four major tasks and corresponding steps for construction of a mixture HM for quantitative134

evaluation of the concentrations of each dissociation stage of one acid in aqueous solution for135

the two cases of known (method A) and unknown (method B) acid dissociation constants pKa136

are schematically summarized in Fig. 1 and briefly outlined in the following. All calculations137

are based on the assumption of dilute, ideal mixtures, thus with activity coefficients equal to138

unity. We neglect changes of both the water concentration and excess volume during titration.139

Moreover, we do not differentiate between Raman signals of water, oxonium, and hydroxide ions140

but assign all three components to the overall water signal. We assume equal Raman activities141

for each acid dissociation stage.52
142

In the cases of both known and unknown pKa, the first major task is the generation of two-143

species spectra that form the basis for PCM construction. In the case of known pKa, the pH at144

which each individual acid species has its concentration maximum is calculated a priori. In the145

case of unknown pKa, a priori concentration calculation is not yet possible at this stage. Next,146

Raman spectra of a titration experiment are recorded that is either a minimal set of titration sam-147

ples with a priori calculated pH-based concentration data in the case of known pKa or a titration148

of the full pH range in the case of unknown pKa, respectively. The recorded Raman spectra are149

pretreated to eliminate external influences of the experimental setup, measurement device and150

environment. After pretreatment, the spectra are processed either by linearly weighted spec-151

tra subtraction in the case of known pKa or MCR-ALS in the case of unknown pKa to obtain152

two-species spectra containing signals of only one acid species and water.153

The second major task is the construction of mixture HMs. The two-species spectra are used154

in IHM to construct PCMs by CHM for each dissociation stage of the acid and water. The PCMs155

are subsequently combined to mixture HMs.156

The third major task of composition calculation via estimated pKa values only applies to the157

case of unknown pKa. Here, the mixture HM is first fitted to the titration spectra to obtain the158

corresponding ratios of peak areas of the acid species. Next, the dissociation equilibria are fitted159
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2.1 Overview of Method A and B 2 MATERIALS AND METHODS

Figure 1. Overview of the four main tasks and corresponding steps to construct a mixture HM

for quantitative monitoring of the concentrations of acid species in aqueous solution

for the two cases of known (method A) and unknown (method B) acid dissociation

constants pKa.
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to the ratios of peak areas of the acid species in an optimization approach to estimate the un-160

known pKa values. Estimated pKa values enable calculation of the titration sample composition161

in the following step.162

The fourth and final major task is the mixture HM calibration that, in the cases of both known163

and unknown pKa, is done on the basis of the titration Raman spectra and corresponding com-164

position data.165

2.2 Experimental166

For titration, analyte solutions of itaconic acid (Alfa Aesar, ě 99%), formic acid (Merck, 98 –167

100%), acetic acid (Merck, 99 – 100%), and citric acid (KMF Laborchemie, ě 99%) are pre-168

pared with defined concentrations in deionized water (conductivity 0.8 µScm´1 at 25 0C). A169

scheme of the experimental setup for titration is provided in Fig. S1, Supplemental Material170

(SM). Aqueous NaOH (VWR Chemicals, 1 mol L´1) is used for titration of the analyte solution171

in a three-neck round bottom flask. The flask is equipped with a magnetic stirrer (250 rpm) and172

held at a constant temperature of 25 0C (Tbath in Fig. S1) in a stirred water bath. For exclusion173

of ambient light, the setup is covered with non-transparent black PVC liner. Temperature and174

pH of the analyte are measured continuously during titration using a SenTix 940 pH electrode175

with Multi 3420 pH meter (WTW). Inline Raman spectra are recorded for the analyte solution176

before titration and at equilibrium with constant pH during titration. Raman spectra are collected177

employing a RXN2 Raman analyzer with 400 mW at 785 nm (Kaiser Optical Systems).53 The178

analyzer is equipped with fiber-optic cables and NIR immersion probes. Inline Raman spectra179

are acquired in a spectral range of 160 – 3285 cm´1 with 4 cm´1 resolution and 60 s acqui-180

sition time in HoloGRAMS ver. 3.2. Additionally, Raman spectra of pure deionized water are181

collected. Further information on Raman spectra collection and pH measurement is provided in182

the SM.183
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2.3 Modeling184

2.3.1 Pretreatment of Spectral Data185

Pretreatment of Raman spectra is done either in MATLAB ver. R2017a (The MathWorks, Inc.)186

for spectra subtraction or in PEAXACT ver. 4.5 (S-PACT) for all other steps.46, 54, 55 GSTools187

ver. 0.4.2 is used for importing and exporting Raman data files to MATLAB, whereas mdatools188

ver. 0.1.6 is employed for spectra normalization by standard normal variate (SNV) method prior189

to spectra subtraction.57, 58 For all steps, a spectral range of 1025 – 1850 cm´1 is selected190

for evaluation with exclusion of the atmospheric oxygen signal between 1545 – 1565 cm´1
191

originating from air in the pathway of the laser beam in the Raman immersion optical probe.53, 59
192

2.3.2 Subtraction of Raman Spectra193

In the case of known pKa (reported values for pKa1 = 3.85 and pKa2 = 5.45), a two-species194

spectrum of the first dissociation stage of itaconic acid (IA´) in water is generated by spectra195

subtraction in MATLAB ver. R2017a.54, 60 Pretreated Raman spectra of fully protonated (IA)196

and fully de-protonated (IA2´) itaconic acid in water are subtracted from a spectrum containing197

all three acids species in water (cf. SM for equations and further details).198

2.3.3 Multivariate Curve Resolution199

In the case of unknown pKa, physically meaningful two-species spectra of each acid species in200

water are generated by MCR-ALS in PEAXACT.48, 50 The Raman spectra of titration samples201

with unknown concentration of the dissociated acid species are used as input for the MCR-ALS202

algorithm. The algorithm is restricted by four constraints: (1) non-negativity for concentrations,203

(2) non-negativity for spectra, (3) concentration profiles with a single maximum (unimodality),204

and (4) sum of concentrations equal to unity (closure constraint). A maximum number of 100205

iterations and a default convergence tolerance of 1 ˆ 10´5 is set. Offset subtraction for baseline206

correction is used.207
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2.3 Modeling 2 MATERIALS AND METHODS

2.3.4 Indirect Hard Modeling208

For the construction of PCMs by IHM and CHM, as well as for the construction of mixture HMs,209

PEAXACT is used. A PCM of water is constructed by IHM via fitting of 4 pseudo-Voigt profiles210

to a Raman spectrum of pure deionized water. The resulting PCM of water is subsequently211

used for CHM to construct PCMs for each acid species.47 IA is modeled by 9 pseudo-Voigt212

profiles, whereas for IA´ and IA2´, 10 pseudo-Voigt profiles are needed to model the respective213

Raman signals (see Tab. SIV for modeling details on formic, acetic, and citric acid). All four214

PCMs are combined to a mixture HM with a linear baseline. A linear fit baseline correction215

and in the case of a priori known pKa also SNV correction are used as additional pretreatment216

settings in the HM. A total number of 43 free parameters (4 component weights, 4 component217

shifts, 2 baseline parameters, and 1 peak position per pseudo-Voigt profile) of the mixture HM218

are automatically adjusted in PEAXACT for a spectral fit such that the mixture HM fits the219

measured Raman spectra well. A fixed component shift for IA2´ is set in the mixture HMs220

to avoid unphysical fitting. Otherwise, default settings for HM peak constraints are selected:221

component shift ˘10 cm´1, position ˘30 cm´1, maximum ˘30%, half width at half maximum222

(HWHM) ˘30%, and Gaussian part ˘0.5. However, the parameters for maximum, HWHM, and223

Gaussian part are fixed for the constructed HMs and therefore do not change from their initial224

value during HM fitting.225

2.3.5 Dissociation Equilibria and Estimation of Acid Dissociation Constants226

In the case of unknown values for pKa1 and pKa2 (defined in SM, Eq. (S5)-(S6)), the dissociation227

constants are estimated by minimizing the RMSE of experimentally determined ratios xk, j,exp and228

calculated ratios xk, j,calc of the acid species k for each titration step j out of the total number of229

titration steps J, k P rIA, IA´, IA2´s. This is valid by the assumption of equal Raman activities230

for the k acid species. Thereby, xk, j,exp is defined as the peak area of the PCM of one acid231

species divided by the sum of the peak areas of the PCMs of all acid species k, which are232

obtained from fitting a mixture HM to the spectrum of each titration step j. Values for xk, j,calc are233
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2.3 Modeling 2 MATERIALS AND METHODS

determined from the calibration sample composition on the basis of the acid species balance and234

acid dissociation equilibria containing the free parameters pKa1 and pKa2 (underlying equations235

for f ppKa1,pKa2q are provided in the SM, Eq. (S2)-(S15)). For better scaling of the optimization236

problem, we do not directly estimate Ka1 and Ka2 but rather use the negative decadic logarithm237

yielding pKa1 and pKa2 as degrees of freedom (DOFs). The optimization problem reads as238

follows:239

min
pKa1,pKa2

ÿ

k

RMSEk @k P rIA, IA´, IA2´s

s.t. RMSEk “

g

f

f

e

1
J

J
ÿ

j“1

´

xk, j,exp ´ xk, j,calc

¯2

xk, j,calc “ f ppKa1,pKa2q

0 ď pKa1 ď 14

0 ď pKa2 ď 14

(1)240

The lower and upper bounds of the optimization problem are chosen as physically meaning-241

ful ranges for acid pKa values. Initial values of pKa1,0 “ pKa2,0 “ 7 are selected. In the case242

of formic, acetic, and citric acid, the optimization problem, number of DOFs, and underlying243

equations are adjusted according to the respective acid dissociation equilibria. The optimization244

problem in Eq. (1) is implemented and solved applying our open-source software for determin-245

istic global optimization MAiNGO (AVT.SVT, RWTH Aachen University).61–63
246

2.3.6 Mixture Hard Model Calibration247

For calibration of mixture HMs and PLS models, as well as for spectral data evaluation, PEAX-248

ACT is used. In the case of itaconic acid (details on other acids in SM), different mixture HMs249

and PLS models are calibrated employing three different calibration data sets separately: (i) a250

full set comprising all 22 Raman spectra of the titration experiment with corresponding com-251

position data calculated with estimated pKa, (ii) a full set comprising the same Raman spectra252

with composition data that is calculated on the basis of reported pKa, and (iii) a minimum set253
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2.3 Modeling 2 MATERIALS AND METHODS

comprising only 4 specific Raman spectra of the titration experiment (maximum molar ratio of254

IA, IA´, and IA2´, respectively, and pure water) with their composition data determined from255

reported pKa (cf. SM for an alternative selection of a minimum set of calibration samples).60
256

The minimum calibration sample number is supported by Alsmeyer et al. and should help to257

elucidate the effect of sample number on the calibration.45 In principle, some deviation from258

the maximum concentration of each acid species is possible, but this reduces the correspond-259

ing Raman signal of the acid species and could result in less accurate PCMs as a consequence.260

Hence, samples with maximum acid species concentration are desired. The mixture HMs are261

calibrated subject to a closure constraint
ř

xk, j “ 1 with k P rIA, IA´, IA2´,waters that holds for262

each titration step j. Due to calibration with active closure constraint, the selected maximum263

function in PEAXACT is of the type simple (ratios) for all HMs. Details on PLS calibration264

settings are provided in the SM.265

2.3.7 Validation of Chemometrics266

For all HMs and PLS models, a leave-10%-out cross-validation is done to assess the calibration267

performance. Figures of merit such as coefficients of determination R2
k, root mean square errors268

of leave-10%-out cross-validation (RMSECVk), and root mean square errors of prediction (RM-269

SEPk) for each chemical species k are calculated to assess the performance of the chemometric270

models (HM and PLS).42
271

The limit of detection LODk “ x̄k,blank ` βσk,blank is determined for each chemical species k272

by the evaluation of 10 blank measurements in pure deionized water. The mean mole fraction273

x̄k,blank and corresponding standard deviation σk,blank are derived from the model prediction of the274

blank measurements. A confidence factor of β = 3.3 is chosen that corresponds to a confidence275

level of 95% assuming normal distribution of measurement errors.64
276
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3 Results and Discussion277

3.1 Inline Raman Spectra of Itaconic Acid Titration278

In Fig. 2, a set of inline Raman spectra recorded during full titration of itaconic acid with NaOH279

in aqueous solution is depicted. For the assessment of the pKa estimation versus the known pKa,280

a set of 4 calibration samples is taken from the full set consisting of 22 calibration samples. As281

schematically shown in the zoomed fingerprint region in Fig. 2, itaconic acid dissociates in two282

stages in course of the titration from fully protonated IA over the first dissociation stage IA´
283

to the second, fully de-protonated stage IA2´. The corresponding dissociation equilibria are284

determined by the values for pKa1 and pKa2.

Figure 2. Inline Raman spectra of itaconic acid in aqueous solution, titrated with NaOH at 25 0C

by 22 titration steps. The zoom details the fingerprint region.

285

The strongest Raman bands occur at a high wavenumber from 2800 – 3285 cm´1 for νO-H286

stretching vibrations predominately caused by water. Further, νs,=CH2 symmetric stretching287

modes at 3010 cm´1 and νs,-C2H- asymmetric stretching modes at 2939 cm´1 belong to itaconic288

acid.65 The most prominent vibrational bands of itaconic acid visible in the fingerprint region289
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3.2 Partial Least Squares Regression for Itaconic Acid 3 RESULTS AND DISCUSSION

are the carbonyl symmetric stretching mode νs,C=O at 1700 cm´1, the carbon-carbon double290

bond stretching mode νC=C at 1643 cm´1, the combined νC-O stretching and γ-O-H deformation291

modes around 1400 cm´1, and the νC-O stretching mode of the carboxyl group at 1220 cm´1.65
292

With increasing pH, a progressive decrease of the carbonyl stretching mode νs,C=O at 1700 cm´1
293

in conjunction with a decrease of the stretching mode νC-O at 1220 cm´1 is observed. The peak294

decrease is caused by the increasing dissociation of itaconic acid, which leads to a successively295

decreasing number of carboxylic groups exhibiting the respective vibrational modes. The result-296

ing carboxylate ion peaks are only slightly visible in a spectral range of 1400 – 1600 cm´1.66
297

The νC-O stretching and γ-O-H deformation modes around 1400 cm´1 slightly shift towards298

a higher wavenumber by 8.8 cm´1 with increasing pH. The shift can also be explained by the299

increasing level of itaconic acid dissociation causing a higher C-O bond strength and therefore a300

higher wavenumber of the molecular vibration. Weak changes in peak intensities and positions301

occur at a lower wavenumber of 700 – 1000 cm´1 but are not evaluated in more detail in this302

work.303

3.2 Partial Least Squares Regression for Itaconic Acid304

We establish PLS calibrations based on the titration samples in Fig. 2 and calculated composi-305

tions from reported pKa values as calibration benchmarks because PLS is a widely used standard306

method for quantitative evaluation of complex spectral data. PLS is calibrated using the same307

data sets as described in the section Mixture Hard Model Calibration (details on PLS calibration308

in SM, Tab. SII). For each chemical species k, the minimum calibration set yields varying R2
k309

and rather high RMSEPk between 3.16 – 17.06 ˆ10´4 mol mol´1 that are also reflected in the310

parity plots (Fig. S6, SM), which show strong non-physical trends. The full set performs better311

but with still relatively high RMSECVk between 2.13 – 8.41 ˆ10´4 mol mol´1 (cf. Fig. S5, SM).312

The rather unsatisfying calibration results of PLS can be attributed to the data-driven nature of313

PLS. Moreover, without a priori available pKa, calculation of acid dissociation and sample com-314

position fails, therefore rendering the PLS method infeasible at all. To overcome the mentioned315
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difficulties during PLS calibration, we pursue the suggested methods A and B in Fig. 1 in the316

following.317

3.3 Method A: Monitoring of Acid Species Concentration With Known318

Dissociation Constants319

As outlined in Fig. 1 for the case of known pKa, the a priori calculation of sample composition320

with reported pKa1 = 3.85 and pKa2 = 5.45 enables calculation of the dissociated itaconic acid321

species IA, IA´, and IA2´ (Fig. 3(a)).60 The symbols (ˆ) and (˜) indicate spectra with maximum322

concentration of acid species that are ready to be used for CHM and spectra that need further323

processing before CHM, respectively. Dissociation of IA proceeds with increasing pH by form-324

ing IA´ with a maximum at pH = 4.68, followed by nearly complete dissociation to IA2´ at325

pH = 7 and higher.326

Maximum molar ratio of the respective itaconic acid species can be measured at the dashed327

vertical lines in Fig. 3(a). The first titration step at pH = 2.09 (ŜIA) shows a molar ratio of acid328

species of xrel
IA,1 = 0.9828 mol mol´1 for IA in water. Similarly, only IA2´ and water contribute329

to the last titration step at pH = 11.84 with the corresponding spectrum ŜIA2´ . While the spectra330

ŜIA and ŜIA2´ can be used right away for PCM construction via CHM, the situation for the331

spectrum S̃IA´ at pH = 4.68 is more complicated. All three itaconic acid species contribute to332

the overall itaconic acid content in water to a significant extent with molar ratios of acid species333

of xrel
IA,15 = 0.1133 mol mol´1, xrel

IA´,15 = 0.7590 mol mol´1, and xrel
IA2´,15

= 0.1277 mol mol´1,334

where the subscript number refers to the titration step 15. The coexistence of all three structurally335

similar itaconic acid species for the titration step 15 at pH = 4.68 impedes the use of the raw336

spectrum S̃IA´ for direct application in CHM to construct a PCM of IA´. To overcome this337

problem, the spectra ŜIA and ŜIA2´ are weighted on the basis of calculated concentration data338

and subtracted from measured raw spectrum S̃IA´ (details provided in the SM, Eq. (S16)-(S17)).339

This results in a processed spectrum ŜIA´ , shown in Fig. 3(b), which corresponds to the IA´
340

Raman signal, still with underlying water signal.341
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Figure 3. (a) Dissociated itaconic acid species calculated from different pH with Raman spectra

in Fig. 2. Vertical dashed lines indicate concentrations with maximum molar ratio for

each of the three itaconic acid species. (b) Raman spectra of maximum molar ratios in

(a) and processed (ˆ) spectrum ŜIA´ resulting from weighted linear subtraction of ŜIA

and ŜIA2´ from the raw (˜) spectrum S̃IA´ .

The most significant difference of S̃IA´ and ŜIA´ emerges at 1700 cm´1 where the carbonyl342

symmetric stretching mode νs,C=O is reduced in intensity, because fully protonated IA does not343

contribute to this peak anymore. All other parts of the spectrum ŜIA´ differ only slightly from344

S̃IA´ , because IA´ is already the main acid species contributing to the overall itaconic acid345

Raman signal. This analysis after spectral subtraction is in line with the qualitative observations346

in Fig. 2. The processed spectrum ŜIA´ now enables construction of a PCM for IA´ via CHM347

that is straightforward.348

The PCMs of all three itaconic acid species and water that are constructed in the second major349

task according to Fig. 1 are depicted in Fig. 4(a)–(d). The mixture HM comprising all four PCMs350

is fitted to a spectrum of an aqueous solution containing all three species of itaconic acid and351

NaOH at pH = 4.83 and is shown in Fig. 4(e) that represents a typical quality of the HM fit352
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Figure 4. (a)–(d) PCMs ( ) comprised of pseudo-Voigt profiles ( ) for the itaconic acid

species IA, IA´, IA2´, and water, based on linearly weighted spectra subtraction

(known pKa), without weighting. (e) Mixture HM ( ) comprised of PCMs from

(a)–(d) with excluded range and linear baseline ( ) for IA, IA´, IA2´, and water

fitted to a Raman spectrum ( ) of an aqueous solution containing itaconic acid and

NaOH at pH = 4.83. (f) Residuals of spectral fit.

(cf. Fig. S3 in SM for RMS Res over pH). The model reflects the spectral data very well in the353

selected spectral range as indicated by the low and uniformly distributed spectral residuals in354

Fig. 4(f).355
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In the fourth major task in Fig. 1, the mixture HM is calibrated and validated. Calibration356

of the mixture HM using the minimum set (4 samples) and the full set (22 samples) yields357

the figures of merit that are listed in Tab. I. In the case of the minimum set, judgement of the358

calibration performance by evaluation of R2
k and RMSECVk fails because these figures of merit359

are strongly biased by the low number of calibration samples.

Table I. Figures of merit for HM calibration of itaconic acid dissociation in aqueous solution for

each chemical species k visible in the Raman calibration spectra.

Chemical R2
k RMSECVk RMSEPk LODk

species k - ˆ10´4 mol mol´1

(IA)a 0.9999 - 2.87 1.20

(IA)b 0.9974 1.70 - 1.26

(IA´)a 0.9984 - 2.32 0.37

(IA´)b 0.9826 2.13 - 0.37

(IA2´)a 0.9993 - 2.17 0.39

(IA2´)b 0.9819 2.02 - 0.37

(water)a 0.9989 - 2.50 -

(water)b 0.9942 1.70 - -

a 4 calibration samples (min. set) and 18 validation samples.

b 22 calibration samples (full set) and cross-validation.
360

A more suitable metric to evaluate the model performance for the minimum set is the RMSEPk361

that we calculate by employing the remaining 18 titration Raman spectra from Fig. 3(a) as a362

validation set. Calculation of RMSEPk yields low values of less than 2.87ˆ10´4 mol mol´1 for363
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all acid species and water. Values for LODk are in the same range or even one order of magnitude364

lower than the corresponding RMSEPk.365

In comparison to the PLS calibration using the minimum set, the HM calibration shows su-366

perior performance with a lower RMSEPk and LODk up to one order of magnitude. This also367

becomes apparent by comparison of the HM and PLS parity plots (cf. Fig. S6, SM) where strong368

non-physical trends can be observed for the validation sample in the case of data-driven PLS,369

whereas the physically-motivated HM predicts the validation sample composition accurately370

even with the minimum set of calibration samples.371

For the full set, all figures of merit but RMSEPk are evaluated: R2
k values are close to 1,372

indicating that the model can explain the variance of the underlying calibration data very well.373

The values for RMSECVk are small and equal to or below 2.13 ˆ 10´4 mol mol´1 for all acid374

species and water. All RMSECVk values are in the range of or one order of magnitude lower375

than the minimum species content in the calibration samples (cf. Fig. S4, SM), which enables the376

envisioned monitoring of acid species. Likewise, the values for LODk are in the same range or377

even one order of magnitude lower than the corresponding RMSECVk. Similar to the minimum378

set, the HM calibration using the full set yields better results compared to the respective PLS379

calibration. This proves the physical motivation of the HM, which results in more consistent380

spectra evaluation.381

Comparison of the minimum and the full calibration set shows that RMSEPk values from the382

minimum set are only slightly higher than the values for RMSECVk in the case of the almost383

six times larger full set. This nicely demonstrates the applicability of IHM on a very small384

calibration data set. Our study shows that the calibration effort for a HM can be strongly reduced385

when samples with maximum concentration of each species can be prepared.386
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3.4 Method B: Monitoring of Acid Species Concentration for Unknown387

Dissociation Constants388

We now hypothetically assume unknown acid dissociation constants of itaconic acid. As a conse-389

quence, four major tasks have to be fulfilled for the construction and calibration of a quantitative390

mixture HM (see Fig. 1). First, two-species spectra of each itaconic acid species in water need391

to be generated for PCM construction. Second, a mixture HM needs to be constructed from the392

PCMs. Third, acid dissociation constants in terms of pKa1 and pKa2 need to be estimated for the393

quantification of calibration sample composition that enables calibration and validation in the394

fourth major task.395

Because of unknown pKa, identification of the necessary mixture spectra for PCM construc-396

tion is impossible on the basis of calibration sample composition and weighted spectra sub-397

traction as in the case of known pKa (cf. Fig. 1). To still obtain spectra of each itaconic acid398

species in water, the Raman spectra in Fig. 2 are processed by MCR-ALS subject to settings and399

constraints outlined in the methods section. Calculation of a water spectrum with MCR-ALS400

is difficult due to the low Raman activity of water and strong overlap of water with acid vibra-401

tional bands. Therefore, we do not use MCR-ALS to calculate the underlying pure component402

spectra of all four chemical species (three acid species plus water). Instead, we calculate only403

three spectra of which each spectrum comprises signals of only one acid species together with404

signals of water to some degree. Hence, we calculate two-species spectra by MCR-ALS. As the405

corresponding component concentration data from MCR-ALS (simultaneously obtained with406

the two-species spectra for each titration sample) is also impaired by a latent water content, the407

direct use of this data for pKa estimation is prohibited and only possible with IHM.408

The resulting spectra are shown in Fig. 5 for the three itaconic acid species IA, IA´, and IA2´.409

Despite no input about spectral characteristics, the MCR-ALS results are very similar to the410

two-species spectra obtained from weighted linear spectra subtraction in Fig. 3. The prevalent411

difference is a two-species spectrum for IA´ in water by MCR-ALS with higher Raman intensity412

of the carbonyl stretching mode νs,C=O at 1700 cm´1 relative to the carbon-carbon double bond413
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Figure 5. Two-component spectra of itaconic acid species IA, IA´, and IA2´ in water, obtained

by MCR-ALS evaluation of Raman spectra in Figure 2, for PCM construction during

IHM (cf. Fig. S10, SM, for PCM comparison of method A and B).

stretching mode νC=C at 1643 cm´1 as compared to the spectrum in Fig. 3. The reason for this414

could be the unknown extent of the water signal in the resulting two-species spectrum, which415

increases the intensity in the corresponding wavenumber interval. As CHM is used for PCM416

construction (direct comparison of PCMs resulting from method A and B in Fig. S10, SM), two-417

species spectra can be applied right away and IHM in the second main task is straightforward418

(cf. Fig. S8, SM, for PCMs, mixture HM and fitting accuracy).419

To assess the third major task of composition calculation via estimating pKa1 and pKa2, the420

dissociation equilibria of itaconic acid are fitted to the ratios of the peak areas of itaconic acid421

species from the HM that is applied on the titration spectra in Fig. 2, with pKa1 and pKa2 as DOF.422

The fitting results are presented in Fig. 6. In general, the estimated model nearly perfectly fits423

the true values. Observed deviations originate from inconsistent spectral fits of the mixture HM424
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Figure 6. Itaconic acid dissociation equilibria and species balance fitted to the ratios of the peak

areas of IA species from IHM to determine pKa1 and pKa2. Estimation of itaconic acid

dissociation constants yields pKa1 = 3.68 and pKa2 = 5.00.

to the titration Raman spectra (probably due to measurement noise and difficulty of fitting the425

weak water Raman signal).426

The determination of acid dissociation constants is commonly done at constant ionic strength427

I and temperature T to avoid changing activity coefficients. In the present work, T is kept428

constant at 25 0C, but I changes with a mean value of I “ 0.34 mol L´1 and influences are429

neglected. The estimation of pKa1 and pKa2, based on the curve fitting shown in Fig. 6, yields430

values of pKa1 = 3.68 and pKa2 = 5.00. The values of pKa1 and pKa2 are consistent with the431

range of acid dissociation constants for itaconic acid found in the literature (3.48 ď pKa1 ď 3.95432

and 4.98 ď pKa2 ď 5.67, cf. Tab. SIV, SM). With the estimated pKa values, the mole fractions433

of IA, IA´, IA2´, and water can be determined for the titration steps corresponding to the 22434

Raman spectra in Fig. 2 to complete the calibration data set. It should be noted that until here,435
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no calibration of the mixture HM is done, but values for pKa are identified on a calibration-free436

basis. This makes method B independent of a priori known dissociation constants and holds437

potential for other applications that are discussed at the end of this section.438

In the fourth major task, the mixture HM is calibrated using the full set employing the esti-439

mated pKa values. The results are summarized in Tab. II (parity plots provided in Fig. S11, SM).440

Table II. Figures of merit for HM calibration of itaconic acid dissociation in aqueous solution for

each chemical species k in the full set of 22 calibration samples. Estimated values of

pKa1 = 3.68 and pKa2 = 5.00 are employed for calculation of the sample composition.

Chemical R2
k RMSECVk LODk

species k - ˆ10´4 mol mol´1

IA 0.9927 2.40 1.29

IA´ 0.9793 2.26 0.45

IA2´ 0.9946 1.12 0.46

water 0.9849 2.26 -

441

All R2
k values are close to 1 indicating that the model fits the variance of the underlying442

calibration data well. The slightly lower value of R2
IA´ corresponds to the less accurate fit of443

the mixture HM to the Raman spectra in the range of pH = 3 to pH = 5 visible in Fig. 6. The444

low values for RMSECVk confirm the accuracy of the calibration. Values for RMSECVk are445

only slightly higher compared to the full set calibration results in Tab. I, which supports the446

consistency of the two approaches.447

Values for LODk are in the same range or even one order of magnitude lower than the corre-448

sponding RMSECVk and indicate a sufficiently precise and consistent calibration model.449

The herein presented method B of coupling IHM and MCR-ALS is independent of a priori450
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available thermodynamic data such as dissociation constants in the present case. This aspect451

holds further potential as the approach can be transferred to other problems such as estimation452

of kinetic parameters from spectroscopic data. By coupling the HM fitting of the spectral data453

to the estimation of thermodynamic parameters, a coupled optimization problem is formed that454

covers the mass balance not just in one spectrum (physically justified HMs) but with the pKa over455

the whole spectral data set. The optimization task is simultaneous minimization of the spectral456

residuals and estimation of the pKa.457

3.5 Generalizability of the Methods458

To demonstrate the generalizability of our method A to other carboxylic acids, mixture HMs are459

constructed and calibrated for formic, acetic, and citric acid for known pKa.69–71 Furthermore,460

we apply method B to formic and acetic acid to validate its applicability to other carboxylic461

acids. In the herein presented case studies, the assumption of a dilute ideal mixture does not462

hold strictly speaking, because acid concentrations surpass 0.1 mol L´1, ionic strength exceeds463

0.01 mol L´1 and polyvalent ions occur. This requires to consider activities for thermodynam-464

ically correct calculations.67, 68 Nevertheless, our experience shows that our strategy can be465

applied with good accuracy to different carboxylic acids. For these reasons, activities are not466

explicitly considered in the present work and ideal thermodynamics are used instead.467

The calibration results for formic, acetic, and citric acid according to method A are summa-468

rized in Tab. III (cf. SM for modeling details and parity plots).469
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Table III. Figures of merit for HM calibration of formic, acetic, and citric acid dissociation in

aqueous solution for each chemical species k visible in the Raman calibration spectra

according to method A. Reported pKa values are employed for calculation of calibra-

tion sample composition.69–71

Chemical R2
k RMSECVk LODk

species k - ˆ10´4 mol mol´1

FA 0.9982 2.61 0.35

FA´ 0.9946 2.29 0.43

water 0.9979 1.93 -

AA 0.9960 2.43 0.00

AA´ 0.9966 2.09 0.00

water 0.9946 1.79 -

CA 0.9981 2.99 0.00

CA´ 0.9675 7.16 12.99

CA2´ 0.9225 8.81 7.51

CA3´ 0.9154 7.20 2.96

water 0.9463 10.13 -
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The calibrations of formic and acetic acid via method A yield accurate results proven by low470

values for RMSECVk that are close to the results of the itaconic acid calibration. In the case of471

citric acid, some difficulties arise during calibration using method A. As the molecular structure472

and therefore PCMs of CA2´ and CA3´ are very similar, they can hardly be distinguished by473

the IHM algorithm. This leads to lower HM calibration accuracies and higher validation errors.474

The results of method B applied on formic and acetic acid are provided in the SM, Fig. S15475

and Fig. S19. We estimate values of pKa “ 3.59 for formic and pKa “ 4.70 for acetic acid that are476

both close to reported values.69, 70 The figures of merit for HM calibration are very comparable477

to the results of method A for both acids and are even slightly better (cf. SM, Fig. S15 and478

Fig. S19).479

Moreover, the comparison of the HM and PLS calibrations for formic, acetic, and citric acid480

reveals errors that are up to one order of magnitude larger in the case of PLS with RMSECVk481

ranging from 5.94 – 23.04 mol mol´1 as shown in Fig. IV (details on calibration settings in482

Tab. SVI, SM). The general performance of PLS could be improved by using more sophisticated483

PLS approaches that are pursued in future work.43, 44
484
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Table IV. Figures of merit for PLS calibration of formic, acetic, and citric acid dissociation in

aqueous solution for each chemical species k visible in the Raman calibration spec-

tra. Reported pKa values are employed for calculation of calibration sample composi-

tion.69–71

Chemical R2
k RMSECVk LODk

species k - ˆ10´4 mol mol´1

FA 0.9981 12.01 2.82

FA´ 0.9900 5.94 0.21

water 0.9998 6.23 -

AA 0.9993 10.67 22.12

AA´ 0.9970 11.06 16.56

water 0.9992 21.78 -

CA 0.9971 8.41 14.83

CA´ 0.9697 17.81 12.63

CA2´ 0.8665 23.04 51.66

CA3´ 0.8250 16.34 36.43

water 0.9983 19.30 -
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4 CONCLUSION

We conclude that the methods A and B are generally applicable for quantitative concentration485

monitoring of acid dissociation states.486

The combination of inline Raman spectroscopy and IHM selectively reveals the dissociation487

species concentration profiles with good accuracy at low experimental calibration effort and488

therefore allows for quantitative process monitoring. Our approach is theoretically not limited489

to carboxylic acids but can be applied to Raman-active mineral acids and acid mixtures also at490

higher concentrations. In such cases, attention has to be paid to the relevant assumptions. More-491

over, Raman-active electrolytes can be calibrated and quantified by our approach that, hence,492

bears potential to support analytics for real-time observation of electrochemical reactions and493

processes.72, 73
494

The presented approach of Raman spectroscopy, IHM, and model-based calibration enables495

reliable monitoring of the concentrations of acid species at elevated temperatures, in solutions496

of higher ionic strength or multiple pH-active chemicals, where in-depth information on acid497

dissociation is not accessible by conventional methods such as pH measurements.498

4 Conclusion499

We present a physically justified approach for the quantification of dissociated carboxylic acid500

species in aqueous solution on the basis of Raman spectroscopy and IHM for the cases of both501

known (method A) and unknown (method B) acid dissociation constants pKa. A comparison of502

IHM with data-driven PLS results for calibration proves much worse errors or even non-reliable503

PLS calibrations. Calibration of itaconic acid species in water via method A by IHM yields very504

good results with RMSECVk values between 1.70 – 2.13ˆ10´4 mol mol´1 for 22 calibration505

samples and slightly worse RMSEPk values of less than 2.87ˆ10´4 mol mol´1 even with 4506

calibration samples only. This enables a very efficient calibration strategy as only a small set of507

calibration samples is required. In the case of unknown acid dissociation constants, method B508

can also estimate the pKa of the acid equilibrium, which enables accurate and consistent process509
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monitoring of acids in aqueous solutions. With itaconic acid, the values of pKa1 = 3.68 and510

pKa2 = 5.00 are estimated (compared to pKa1 = 3.85 and pKa2 = 5.45 from the literature). HM511

errors of RMSECVk between 1.12 – 2.40ˆ10´4 mol mol´1 are reached. Successful application512

of both methods to formic and acetic acid and method A to citric acid in aqueous solution with513

similar RMSECVk between 1.14 – 10.13ˆ10´4 mol mol´1 verifies the generalizability of the514

suggested methods for other Raman-active acids.515
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